Continuous theta burst stimulation over the contralesional sensory and motor cortex enhances motor learning post-stroke.
نویسندگان
چکیده
The current study investigated the contributions of contralesional primary somatosensory cortex (S1c) to motor learning deficits post-stroke. For three days, continuous theta burst (cTBS) was delivered over the contralesional hemisphere prior to practicing a serial targeting task. cTBS was delivered over either S1c, contralesional primary motor cortex (M1c) or as control stimulation (n=4/group). Change in motor ability was assessed from initial performance to a delayed retention test using a serial targeting task and a subset of items from the Wolf Motor Function Test. Practice preceded by cTBS over either M1c or S1c resulted in large decreases in movement time compared to practice preceded by control stimulation. M1c cTBS resulted in larger decreases in peak velocity and peak acceleration compared to control and S1c cTBS. In contrast, S1c cTBS resulted in larger reductions in time to initiate movement and time to complete the WMFT compared to control and M1c cTBS. These preliminary findings suggest that stimulation of either M1c or S1c can enhance the benefits of practice. However, changes in M1c and S1c excitability may contribute to different aspects of post-stroke motor deficits that may differentially impact rehabilitation.
منابع مشابه
Combining theta burst stimulation with training after subcortical stroke.
BACKGROUND AND PURPOSE Repetitive transcranial magnetic stimulation of the primary motor cortex (M1) may improve outcomes after stroke. The aim of this study was to determine the effects of M1 theta burst stimulation (TBS) and standardized motor training on upper-limb function of patients with chronic stroke. METHODS Ten patients with chronic subcortical stroke and upper-limb impairment were ...
متن کاملEfficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients.
BACKGROUND AND PURPOSE Although there has been extensive research on the effectiveness of repetitive transcranial magnetic stimulation (rTMS) to improve patients' motor performance after experiencing chronic stroke, explicit findings on the coupling of different rTMS protocols are meager. We designed this sham-controlled randomized study to investigate the potential for a consecutive suppressiv...
متن کاملBrain stimulation for arm recovery after stroke (B-STARS): protocol for a randomised controlled trial in subacute stroke patients
INTRODUCTION Many patients with stroke have moderate to severe long-term sensorimotor impairments, often including inability to execute movements of the affected arm or hand. Limited recovery from stroke may be partly caused by imbalanced interaction between the cerebral hemispheres, with reduced excitability of the ipsilesional motor cortex while excitability of the contralesional motor cortex...
متن کاملThe Contribution of Primary Motor Cortex is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation
Theta burst transcranial magnetic stimulation (TBS) is considered to produce plastic changes in human motor cortex. Here, we examined the inhibitory and excitatory effects of TBS on implicit sequence learning using a probabilistic serial reaction time paradigm. We investigated the involvement of several cortical regions associated with implicit sequence learning by examining probabilistic seque...
متن کاملTime-dependent functional role of the contralesional motor cortex after stroke
After stroke, movements of the paretic hand rely on altered motor network dynamics typically including additional activation of the contralesional primary motor cortex (M1). The functional implications of contralesional M1 recruitment to date remain a matter of debate. We here assessed the role of contralesional M1 in 12 patients recovering from a first-ever stroke using online transcranial mag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience letters
دوره 500 1 شماره
صفحات -
تاریخ انتشار 2011